Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731798

RESUMO

Aphids are insect pests that suck phloem sap and introduce salivary proteins into plant tissues through saliva secretion. The effector of salivary proteins plays a key role in the modulation of host plant defense responses and enhancing aphid host adaptation. Based on previous transcriptome sequencing results, a candidate effector cyclin-dependent kinase-like (CDK) was identified from the grain aphid Sitobion avenae. In this study, the function of SaCDK in wheat defense response and the adaptation of S. avenae was investigated. Our results showed that the transient overexpression of SaCDK in tobacco Nicotiana benthamiana suppressed cell death triggered by mouse pro-apoptotic protein-BAX or Phytophthora infestans PAMP-INF1. SaCDK, delivered into wheat cells through a Pseudomonas fluorescens-mediated bacterial type III secretion system, suppressed callose deposition in wheat seedlings, and the overexpression of SaCDK in wheat significantly decreased the expression levels of salicylic acid and jasmonic acid signaling pathway-related genes phenylalanine ammonia lyase (PAL), pathogenesis-related 1 protein (PR1), lipoxygenase (LOX) and Ω-3 fatty acid desaturase (FAD). In addition, aphid bioassay results showed that the survival and fecundity of S. avenae were significantly increased while feeding on the wheat plants carrying SaCDK. Taken together, our findings demonstrate that the salivary protein SaCDK is involved in inhibiting host defense response and improving its host adaptation, which lays the foundation to uncover the mechanism of the interaction of cereal aphids and host plants.


Assuntos
Afídeos , Triticum , Animais , Afídeos/fisiologia , Triticum/parasitologia , Triticum/genética , Triticum/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Adaptação Fisiológica , Doenças das Plantas/parasitologia , Regulação da Expressão Gênica de Plantas , Nicotiana/parasitologia , Nicotiana/genética , Ciclopentanos/metabolismo , Oxilipinas
2.
Braz. j. biol ; 84: e249472, 2024. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1364512

RESUMO

Leaf rust, caused by Puccinia triticina, is the most common rust disease of wheat. The fungus is an obligate parasite capable of producing infectious urediniospores. To study the genetic structure of the leaf rust population 20 RAPD primers were evaluated on 15 isolates samples collected in Pakistan. A total of 105 RAPD fragments were amplified with an average of 7 fragments per primer. The number of amplified fragments varied from 1 to 12. GL Decamer L-07 and GL Decamer L-01 amplified the highest number of bands (twelve) and primer GL Decamer A-03 amplified the lowest number of bands i.e one. Results showed that almost all investigated isolates were genetically different that confirms high genetic diversity within the leaf rust population. Rust spores can follow the migration pattern in short and long distances to neighbor areas. Results indicated that the greatest variability was revealed by 74.9% of genetic differentiation within leaf rust populations. These results suggested that each population was not completely identical and high gene flow has occurred among the leaf rust population of different areas. The highest differentiation and genetic distance among the Pakistani leaf rust populations were detected between the leaf rust population in NARC isolate (NARC-4) and AARI-11and the highest similarity was observed between NARC isolates (NARC-4) and (NARC-5). The present study showed the leaf rust population in Pakistan is highly dynamic and variable.


A ferrugem da folha, causada por Puccinia triticina, é a ferrugem mais comum do trigo. O fungo é um parasita obrigatório, capaz de produzir urediniósporos infecciosos. Para estudar a estrutura genética da população de ferrugem da folha, 20 primers RAPD foram avaliados em 15 amostras de isolados coletadas no Paquistão. Um total de 105 fragmentos RAPD foram amplificados com uma média de 7 fragmentos por primer. O número de fragmentos amplificados variou de 1 a 12. GL Decamer L-07 e GL Decamer L-01 amplificaram o maior número de bandas (doze), e o primer GL Decamer A-03 amplificou o menor número de bandas, ou seja, um. Os resultados mostraram que quase todos os isolados investigados eram geneticamente diferentes, o que confirma a alta diversidade genética na população de ferrugem da folha. Os esporos de ferrugem podem seguir o padrão de migração em distâncias curtas e longas para áreas vizinhas. Os resultados indicaram que a maior variabilidade foi revelada por 74,9% da diferenciação genética nas populações de ferrugem. Esses resultados sugeriram que cada população não era completamente idêntica e um alto fluxo gênico ocorreu entre a população de ferrugem da folha de diferentes áreas. A maior diferenciação e distância genética entre as populações de ferrugem da folha do Paquistão foram detectadas entre a população de ferrugem da folha no isolado NARC (NARC-4) e AARI-11 e a maior similaridade foi observada entre os isolados NARC (NARC-4) e (NARC-5). O presente estudo mostrou que a população de ferrugem da folha no Paquistão é altamente dinâmica e variável.


Assuntos
Triticum/parasitologia , Biomarcadores , Pragas da Agricultura , Fungos/genética , Puccinia/genética
3.
BMC Plant Biol ; 23(1): 529, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904124

RESUMO

BACKGROUND: In hexaploid wheat, quantitative trait loci (QTL) and meta-QTL (MQTL) analyses were conducted to identify genomic regions controlling resistance to cereal cyst nematode (CCN), Heterodera avenae. A mapping population comprising 149 RILs derived from the cross HUW 468 × C 306 was used for composite interval mapping (CIM) and inclusive composite interval mapping (ICIM). RESULTS: Eight main effect QTLs on three chromosomes (1B, 2A and 3A) were identified using two repeat experiments. One of these QTLs was co-localized with a previously reported wheat gene Cre5 for resistance to CCN. Seven important digenic epistatic interactions (PVE = 5% or more) were also identified, each involving one main effect QTL and another novel E-QTL. Using QTLs earlier reported in literature, two meta-QTLs were also identified, which were also used for identification of 57 candidate genes (CGs). Out of these, 29 CGs have high expression in roots and encoded the following proteins having a role in resistance to plant parasitic nematodes (PPNs): (i) NB-ARC,P-loop containing NTP hydrolase, (ii) Protein Kinase, (iii) serine-threonine/tyrosine-PK, (iv) protein with leucine-rich repeat, (v) virus X resistance protein-like, (vi) zinc finger protein, (vii) RING/FYVE/PHD-type, (viii) glycosyl transferase, family 8 (GT8), (ix) rubisco protein with small subunit domain, (x) protein with SANT/Myb domain and (xi) a protein with a homeobox. CONCLUSION: Identification and selection of resistance loci with additive and epistatic effect along with two MQTL and associated CGs, identified in the present study may prove useful for understanding the molecular basis of resistance against H. avenae in wheat and for marker-assisted selection (MAS) for breeding CCN resistant wheat cultivars.


Assuntos
Locos de Características Quantitativas , Tylenchoidea , Animais , Locos de Características Quantitativas/genética , Triticum/genética , Triticum/parasitologia , Melhoramento Vegetal , Fenótipo
4.
Sci Rep ; 12(1): 9586, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688926

RESUMO

The resistance to cereal cyst nematode (Heterodera avenae Woll.) in wheat (Triticum aestivum L.) was studied using 114 doubled haploid lines from a novel ITMI mapping population. These lines were screened for nematode infestation in a controlled environment for two years. QTL-mapping analyses were performed across two years (Y1 and Y2) as well as combining two years (CY) data. On the 114 lines that were screened, a total of 2,736 data points (genotype, batch or years, and replication combinations) were acquired. For QTL analysis, 12,093 markers (11,678 SNPs and 415 SSRs markers) were used, after filtering the genotypic data, for the QTL mapping. Composite interval mapping, using Haley-Knott regression (hk) method in R/QTL, was used for QTL analysis. In total, 19 QTLs were detected out of which 13 were novel and six were found to be colocalized or nearby to previously reported Cre genes, QTLs or MTAs for H. avenae or H. filipjevi. Nine QTLs were detected across all three groups (Y1, Y2 and CY) including a significant QTL "QCcn.ha-2D" on chromosome 2D that explains 23% of the variance. This QTL colocalized with a previously identified Cre3 locus. Novel QTL, QCcn.ha-2A, detected in the present study could be the possible unreported homeoloci to QCcn.ha-2D, QCcn.ha-2B.1 and QCcn.ha-2B.2. Six significant digenic epistatic interactions were also observed. In addition, 26 candidate genes were also identified including genes known for their involvement in PPNs (plant parasitic nematodes) resistance in different plant species. In-silico expression of putative candidate genes showed differential expression in roots during specific developmental stages. Results obtained in the present study are useful for wheat breeding to generate resistant genetic resources against H. avenae.


Assuntos
Cistos , Tylenchida , Tylenchoidea , Animais , Grão Comestível , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Triticum/genética , Triticum/parasitologia , Tylenchoidea/genética
5.
Plant J ; 107(3): 698-712, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33974322

RESUMO

The pathogen cereal cyst nematode (CCN) is deleterious to Triticeae crops and is a threat to the global crop yield. Accession no. 1 of Aegilops variabilis, a relative of Triticum aestivum (bread wheat), is highly resistant to CCN. Our previous study demonstrated that the expression of the phenylalanine ammonia lyase (PAL) gene AevPAL1 in Ae. variabilis is strongly induced by CCN. PAL, the first enzyme of phenylpropanoid metabolism, is involved in abiotic and biotic stress responses. However, its role in plant-CCN interaction remains unknown. In the present study, we proved that AevPAL1 helps to confer CCN resistance through affecting the synthesis of salicylic acid (SA) and downstream secondary metabolites. The silencing of AevPAL1 increased the incidence of CCN infection in roots and decreased the accumulation of SA and phenylalanine (Phe)-derived specialized metabolites. The exogenous pre-application of SA also improved CCN resistance. Additionally, the functions of PAL in phenylpropanoid metabolism correlated with tryptophan decarboxylase (TDC) functioning in tryptophan metabolism pathways. The silencing of either AevPAL1 or AevTDC1 exhibited a concomitant reduction in the expression of both genes and the contents of metabolites downstream of PAL and TDC. These results suggested that AevPAL1, possibly in coordination with AevTDC1, positively contributes to CCN resistance by altering the downstream secondary metabolites and SA content in Ae. variabilis. Moreover, AevPAL1 overexpression significantly enhanced CCN resistance in bread wheat and did not exhibit significant negative effects on yield-related traits, suggesting that AevPAL1 is valuable for the genetic improvement of CCN resistance in bread wheat.


Assuntos
Nematoides/fisiologia , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Triticum/metabolismo , Triticum/parasitologia , Animais , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Plantas/genética
6.
Bull Entomol Res ; 111(5): 544-552, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33814021

RESUMO

Salicylic acid (SA), a phytohormone, has been considered to be a key regulator mediating plant defence against pathogens. It is still vague how SA activates plant defence against herbivores such as chewing and sucking pests. Here, we used an aphid-susceptible wheat variety to investigate Sitobion avenae response to SA-induced wheat plants, and the effects of exogenous SA on some defence enzymes and phenolics in the plant immune system. In SA-treated wheat seedlings, intrinsic rate of natural increase (rm), fecundity and apterous rate of S. avenae were 0.25, 31.4 nymphs/female and 64.4%, respectively, and significantly lower than that in the controls (P < 0.05). Moreover, the increased activities of phenylalanine-ammonia-lyase, polyphenol oxidase (PPO) and peroxidase in the SA-induced seedlings obviously depended on the sampling time, whereas activities of catalase and 4-coumarate:CoA ligase were suppressed significantly at 24, 48 and 72 h in comparison with the control. Dynamic levels of p-coumaric acid at 96 h, caffeic acid at 24 and 72 h and chlorogenic acid at 24, 48 and 96 h in wheat plants were significantly upregulated by exogenous SA application. Nevertheless, only caffeic acid content was positively correlated with PPO activity in SA-treated wheat seedlings (P = 0.031). These findings indicate that exogenous SA significantly enhanced the defence of aphid-susceptible wheat variety against aphids by regulating the plant immune system, and may prove a potential application of SA in aphid control.


Assuntos
Afídeos/efeitos dos fármacos , Ácido Salicílico/farmacologia , Triticum/parasitologia , Animais , Afídeos/crescimento & desenvolvimento , Folhas de Planta/química , Plântula , Triticum/enzimologia , Triticum/imunologia
7.
Molecules ; 26(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806970

RESUMO

Most insecticides commonly used in storage facilities are synthetic, an issue that generates concerns about food safety and public health. Therefore, the development of eco-friendly pest management tools is urgently needed. In the present study, a 6% (w/w) Hazomalania voyronii essential oil-based nanoemulsion (HvNE) was developed and evaluated for managing Tribolium confusum, T. castaneum, and Tenebrio molitor, as an eco-friendly wheat protectant. Larval and adult mortality was evaluated after 4, 8, and 16 h, and 1, 2, 3, 4, 5, 6, and 7 days, testing two HvNE concentrations (500 ppm and 1000 ppm). T. confusum and T. castaneum adults and T. molitor larvae were tolerant to both concentrations of the HvNE, reaching 13.0%, 18.7%, and 10.3% mortality, respectively, at 1000 ppm after 7 days of exposure. However, testing HvNE at 1000 ppm, the mortality of T. confusum and T. castaneum larvae and T. molitor adults 7 days post-exposure reached 92.1%, 97.4%, and 100.0%, respectively. Overall, the HvNE can be considered as an effective adulticide or larvicide, depending on the target species. Our results highlight the potential of H. voyronii essential oil for developing green nanoinsecticides to be used in real-world conditions against key stored-product pests.


Assuntos
Inseticidas , Laurales/química , Óleos Voláteis , Tribolium/crescimento & desenvolvimento , Triticum/parasitologia , Animais , Emulsões , Inseticidas/química , Inseticidas/farmacologia , Larva/crescimento & desenvolvimento , Óleos Voláteis/química , Óleos Voláteis/farmacologia
8.
Sci Rep ; 11(1): 3572, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574377

RESUMO

Root lesion nematode (RLN; Pratylenchus thornei) causes extensive yield losses in wheat worldwide and thus pose serious threat to global food security. Reliance on fumigants (such as methyl bromide) and nematicides for crop protection has been discouraged due to environmental concerns. Hence, alternative environment friendly control measures like finding and deployment of resistance genes against Pratylenchus thornei are of significant importance. In the present study, genome-wide association study (GWAS) was performed using single-locus and multi-locus methods. In total, 143 wheat genotypes collected from pan-Indian wheat cultivation states were used for nematode screening. Genotypic data consisted of  > 7K SNPs with known genetic positions on the high-density consensus map was used for association analysis. Principal component analysis indicated the existence of sub-populations with no major structuring of populations due to the origin. Altogether, 25 significant marker trait associations were detected with - log10 (p value) > 4.0. Three large linkage disequilibrium blocks and the corresponding haplotypes were found to be associated with significant SNPs. In total, 37 candidate genes with nine genes having a putative role in disease resistance (F-box-like domain superfamily, Leucine-rich repeat, cysteine-containing subtype, Cytochrome P450 superfamily, Zinc finger C2H2-type, RING/FYVE/PHD-type, etc.) were identified. Genomic selection was conducted to investigate how well one could predict the phenotype of the nematode count without performing the screening experiments. Prediction value of r = 0.40 to 0.44 was observed when 56 to 70% of the population was used as a training set. This is the first report where GWAS has been conducted to find resistance against root lesion nematode (P. thornei) in Indian wheat germplasm.


Assuntos
Estudo de Associação Genômica Ampla , Nematoides/genética , Raízes de Plantas/genética , Triticum/genética , Animais , Genoma de Planta/genética , Nematoides/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Triticum/parasitologia
9.
Plant Cell Rep ; 40(2): 393-403, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33388893

RESUMO

KEY MESSAGE: Resistance conferred by the Cre8 locus of wheat prevents cereal cyst nematode feeding sites from reaching and invading root metaxylem vessels. Cyst nematodes develop syncytial feeding sites within plant roots. The success of these sites is affected by host plant resistance. In wheat (Triticum aestivum L.), 'Cre' loci affect resistance against the cereal cyst nematode (CCN) Heterodera avenae. To investigate how one of these loci (Cre8, on chromosome 6B) confers resistance, CCN-infected root tissue from susceptible (-Cre8) and resistant (+Cre8) wheat plants was examined using confocal microscopy and laser ablation tomography. Confocal analysis of transverse sections showed that feeding sites in the roots of -Cre8 plants were always adjacent to metaxylem vessels, contained many intricate 'web-like' cell walls, and sometimes 'invaded' metaxylem vessels. In contrast, feeding sites in the roots of +Cre8 plants were usually not directly adjacent to metaxylem vessels, had few inner cell walls and did not 'invade' metaxylem vessels. Models based on data from laser ablation tomography confirmed these observations. Confocal analysis of longitudinal sections revealed that CCN-induced xylem modification that had previously been reported for susceptible (-Cre8) wheat plants is less extreme in resistant (+Cre8) plants. Application of a lignin-specific stain revealed that secondary thickening around xylem vessels in CCN-infected roots was greater in +Cre8 plants than in -Cre8 plants. Collectively, these results indicate that Cre8 resistance in wheat acts by preventing cyst nematode feeding sites from reaching and invading root metaxylem vessels.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Triticum/parasitologia , Tylenchida/fisiologia , Animais , Parede Celular/parasitologia , Parede Celular/ultraestrutura , Suscetibilidade a Doenças , Loci Gênicos , Imageamento Tridimensional , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/parasitologia , Raízes de Plantas/ultraestrutura , Triticum/genética , Triticum/ultraestrutura , Xilema/genética , Xilema/parasitologia , Xilema/ultraestrutura
10.
J Appl Genet ; 62(1): 93-98, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33403645

RESUMO

Yield losses because of cereal cyst nematodes could be as high as 92%, causing a bottleneck for wheat production. An integrated approach (application of pesticides, crop rotation, and use of host resistance) is needed to manage this devastating pathogen where resistant cultivars are considered most effective. This necessitates the identification of nematode-resistant sources in the available germplasm. Here, we report on the genetic mapping of nematode resistance in 255 diverse prebreeding lines (PBLs) employing an association mapping strategy. Altogether, seven additive quantitative trait loci (QTL) were identified on chromosomes 1A, 2A, 2B, 2D, 3A, 6B, and 6D explaining a maximum of 9.42% phenotypic variation where at least five QTL (on chromosomes 2A, 2B, 2D, 6B, and 6D) are located on the same chromosomes that harbor the already known nematode resistance genes. Resistant PBLs carried Aegilops squarrosa (436) in their pedigree which could be the possible source of positive alleles. To add to it, better yield performance of the identified nematode-resistant lines under stress conditions indicates that the germplasm can provide both nematode resistance and high-yielding cultivars.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/parasitologia , Triticum/genética , Tylenchoidea , Animais , Grão Comestível/genética , Grão Comestível/parasitologia , Estudos de Associação Genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/parasitologia , Tylenchoidea/patogenicidade
11.
Fitoterapia ; 148: 104801, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33309650

RESUMO

Three new sesquiterpenoids, peniterpenoids A - C (1-3), together with six known metabolites (4-9) were isolated from an entomogenous fungus Penicillium janthinellum (LB1.20090001) collected from a wheat cyst nematode. The structures of the new compounds were elucidated based on NMR and HRESIMS spectroscopic analyses. The absolute configuration of the C-8 secondary alcohol of peniterpenoid B (2) was determined by [Rh2(OCOCF3)4]-induced ECD experiment. Subsequently, the antimicrobial and DPPH scavenging activities were determined. Compounds 6-8 exhibited moderate antibacterial activities against Staphylococcus aureus (CGMCC1.2465) with MIC values of 25.0, 50.0 and 12.5 µg/mL, respectively.


Assuntos
Antibacterianos/farmacologia , Nematoides/microbiologia , Penicillium/química , Sesquiterpenos/farmacologia , Triticum/parasitologia , Animais , Antibacterianos/isolamento & purificação , China , Testes de Sensibilidade Microbiana , Estrutura Molecular , Sesquiterpenos/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos
12.
Plant Sci ; 301: 110670, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33218636

RESUMO

The cereal cyst nematode, Heterodera avenae is distributed worldwide and causes substantial damage in bread wheat, Triticum aestivum. This nematode is extremely difficult to manage because of its prolonged persistence as unhatched eggs encased in cysts. Due to its sustainable and target-specific nature, RNA interference (RNAi)-based strategy has gained unprecedented importance for pest control. To date, RNAi strategy has not been exploited to manage H. avenae in wheat. In the present study, 40 H. avenae target genes with different molecular function were rationally selected for in vitro soaking analysis in order to assess their susceptibility to RNAi. In contrast to target-specific downregulation of 18 genes, 7 genes were upregulated and 15 genes showed unaltered expression (although combinatorial soaking showed some of these genes are RNAi susceptible), suggesting that a few of the target genes were refractory or recalcitrant to RNAi. However, RNAi of 37 of these genes negatively altered nematode behavior in terms of reduced penetration, development and reproduction in wheat. Subsequently, wheat plants were transformed with seven H. avenae target genes (that showed greatest abrogation of nematode parasitic success) for host-induced gene silencing (HIGS) analysis. Transformed plants were molecularly characterized by PCR, RT-qPCR and Southern hybridization. Production of target gene-specific double- and single-stranded RNA (dsRNA/siRNA) was detected in transformed plants. Transgenic expression of galectin, cathepsin L, vap1, serpin, flp12, RanBPM and chitinase genes conferred 33.24-72.4 % reduction in H. avenae multiplication in T1 events with single copy ones exhibiting greatest reduction. A similar degree of resistance observed in T2 plants indicated the consistent HIGS effect in the subsequent generations. Intriguingly, cysts isolated from RNAi plants were of smaller size with translucent cuticle compared to normal size, dark brown control cysts, suggesting H. avenae developmental retardation due to HIGS. Our study reinforces the potential of HIGS to manage nematode problems in crop plant.


Assuntos
Proteínas de Helminto/genética , Interações Hospedeiro-Parasita , Doenças das Plantas/prevenção & controle , Triticum/parasitologia , Tylenchoidea/crescimento & desenvolvimento , Animais , Catepsina L/genética , Catepsina L/metabolismo , Galectinas/genética , Galectinas/metabolismo , Expressão Gênica , Inativação Gênica , Proteínas de Helminto/metabolismo , Doenças das Plantas/parasitologia , Transgenes , Triticum/genética , Tylenchoidea/genética , Tylenchoidea/fisiologia
13.
Sci Rep ; 10(1): 9025, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493993

RESUMO

Cyst nematodes induce host-plant root cells to form syncytia from which the nematodes feed. Comprehensive histological investigation of these feeding sites is complicated by their variable shape and their positions deep within root tissue. Using tissue clearing and confocal microscopy, we examined thick (up to 150 µm) sections of wheat roots infected by cereal cyst nematodes (Heterodera avenae). This approach provided clear views of feeding sites and surrounding tissues, with resolution sufficient to reveal spatial relationships among nematodes, syncytia and host vascular tissues at the cellular level. Regions of metaxylem vessels near syncytia were found to have deviated from classical developmental patterns. Xylem vessel elements in these regions had failed to elongate but had undergone radial expansion, becoming short and plump rather than long and cylindrical. Further investigation revealed that vessel elements cease to elongate shortly after infection and that they later experience delays in secondary thickening (lignification) of their outer cell walls. Some of these elements were eventually incorporated into syncytial feeding sites. By interfering with a developmental program that normally leads to programmed cell death, H. avenae may permit xylem vessel elements to remain alive for later exploitation by the parasite.


Assuntos
Infecções por Nematoides/metabolismo , Triticum/metabolismo , Xilema/citologia , Animais , Parede Celular/metabolismo , Cistos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Células Gigantes/citologia , Infecções , Microscopia Confocal/métodos , Nematoides/metabolismo , Infecções por Nematoides/fisiopatologia , Doenças das Plantas/parasitologia , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Triticum/parasitologia , Tylenchoidea/parasitologia , Tylenchoidea/fisiologia
14.
PLoS One ; 15(5): e0232770, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32369513

RESUMO

Cereal cyst nematodes cause serious yield losses of wheat in Hunaghuai winter wheat growing region in China. Beauveria bassiana 08F04 isolated from the surface of cysts is a promising biological control agent for cereal cyst nematodes. As the colonization capacity is a crucial criteria to assess biocontrol effectiveness for a microbial agent candidate, we aimed to label B. bassiana 08F04 for efficient monitoring of colonization in the soil. The binary pCAM-gfp plasmid containing sgfp and hph was integrated into B. bassiana 08F04 using the Agrobacterium tumefaciens-mediated transformation. The transformation caused a significant change in mycelial and conidial yields, and in extracellular chitinase activity in some transformants. The cultural filtrates of some transformants also decreased acetylcholinesterase activity and the survival of Heterodera filipjevi second-stage juveniles relative to the wild-type strain. One transformant (G10) had a growth rate and biocontrol efficacy similar to the wild-type strain, so it was used for a pilot study of B. bassiana colonization conducted over 13 weeks. Real-time PCR results and CFU counts revealed that the population of G10 increased quickly over the first 3 weeks, then decreased slowly over the following 4 weeks before stabilizing. In addition, the application of wild-type B. bassiana 08F04 and transformant G10 significantly reduced the number of H. filipjevi females in roots by 64.4% and 60.2%, respectively. The results of this study have practical applications for ecological, biological and functional studies of B. bassiana 08F04 and for bionematicide registration.


Assuntos
Beauveria/fisiologia , Controle Biológico de Vetores , Doenças das Plantas/parasitologia , Triticum/parasitologia , Tylenchida/fisiologia , Agrobacterium tumefaciens/genética , Animais , Beauveria/genética , Feminino , Raízes de Plantas/parasitologia , Microbiologia do Solo , Transformação Genética
15.
Phytopathology ; 110(2): 472-482, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31433275

RESUMO

The coexistence of cereal cyst nematode (CCN) species Heterodera avenae and H. filipjevi, often involving multiple pathotypes, is a limiting factor for wheat production in China. Some of the known genes for resistance to CCN are not effective against both nematode species, hence complicating breeding efforts to develop CCN-resistant wheat cultivars. Here, we demonstrate that the CCN resistance in wheat cultivar Madsen to both Heterodera spp. is controlled by different genetic loci, both of which originated from Aegilops ventricosa. A new quantitative trait locus (QTL), QCre-ma7D, was identified and localized in a 3.77-Mb genomic region on chromosome arm 7DL, which confers resistance to H. filipjevi. QCre-ma2A on chromosome arm 2AS corresponds to CCN resistance gene Cre5 and confers resistance to H. avenae. This QTL is a new locus on chromosome arm 7DL and is designated Cre9. Three Kompetitive allele-specific PCR markers (BS00150072, BS00021745, and BS00154302) were developed for molecular marker-assisted selection of Cre9 and locally adapted wheat lines with resistance to both nematode species were developed. QCre-ma2A on chromosome arm 2AS corresponds to CCN resistance gene Cre5 and confers resistance to H. avenae. The identification of different loci underlying resistance to H. filipjevi and H. avenae and the development of adapted resistant entries will facilitate breeding of wheat cultivars that are resistant to these devastating nematodes in China.


Assuntos
Resistência à Doença , Locos de Características Quantitativas , Triticum , Tylenchoidea , Aegilops/genética , Animais , China , Resistência à Doença/genética , Doenças das Plantas/parasitologia , Triticum/parasitologia , Tylenchoidea/fisiologia
16.
BMC Plant Biol ; 19(1): 439, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640550

RESUMO

BACKGROUND: The Hessian fly (Mayetiola destructor), belonging to the gall midge family (Cecidomyiidae), is a devastating pest of wheat (Triticum aestivum) causing significant yield losses. Despite identification and characterization of numerous Hessian fly-responsive genes and associated biological pathways involved in wheat defense against this dipteran pest, their functional validation has been challenging. This is largely attributed to the large genome, polyploidy, repetitive DNA, and limited genetic resources in hexaploid wheat. The diploid progenitor Aegilops tauschii, D-genome donor of modern-day hexaploid wheat, offers an ideal surrogate eliminating the need to target all three homeologous chromosomes (A, B and D) individually, and thereby making the functional validation of candidate Hessian fly-responsive genes plausible. Furthermore, the well-annotated sequence of Ae. tauschii genome and availability of genetic resources amenable to manipulations makes the functional assays less tedious and time-consuming. However, prior to utilization of this diploid genome for downstream studies, it is imperative to characterize its physical and molecular responses to Hessian fly. RESULTS: In this study we screened five Ae. tauschii accessions for their response to the Hessian fly biotypes L and vH13. Two lines were identified that exhibited a homozygous resistance response to feeding by both Hessian fly biotypes. Studies using physical measurements and neutral red staining showed that the resistant Ae. tauschii accessions resembled hexaploid wheat in their phenotypic responses to Hessian fly, that included similarities in larval developmental stages, leaf and plant growth, and cell wall permeability. Furthermore, molecular responses, characterized by gene expression profiling using quantitative real-time PCR, in select resistant Ae. tauschii lines also revealed similarities with resistant hexaploid wheat. CONCLUSIONS: Phenotypic and molecular characterization of Ae. tauschii to Hessian fly infestation revealed resistant accessions that shared similarities to hexaploid wheat. Resembling the resistant hexaploid wheat, the Ae. tauschii accessions mount an early defense strategy involving defense proteins including lectins, secondary metabolites and reactive oxygen species (ROS) radicals. Our results reveal the suitability of the diploid progenitor for use as an ideal tool for functional genomics research in deciphering the wheat-Hessian fly molecular interactions.


Assuntos
Aegilops/genética , Dípteros/fisiologia , Genoma de Planta/genética , Doenças das Plantas/imunologia , Triticum/genética , Aegilops/imunologia , Aegilops/parasitologia , Animais , Diploide , Genômica , Fenótipo , Doenças das Plantas/parasitologia , Poliploidia , Espécies Reativas de Oxigênio/metabolismo , Triticum/imunologia , Triticum/parasitologia
17.
PLoS One ; 14(8): e0219431, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31437174

RESUMO

Insect herbivores can manipulate host plants to inhibit defenses. Insects that induce plant galls are excellent examples of these interactions. The Hessian fly (HF, Mayetiola destructor) is a destructive pest of wheat (Triticum spp.) that occurs in nearly all wheat producing globally. Under compatible interactions (i.e., successful HF establishment), HF larvae alter host tissue physiology and morphology for their benefit, manifesting as the development of plant nutritive tissue that feeds the larva and ceases plant cell division and elongation. Under incompatible interactions (i.e., unsuccessful HF establishment), plants respond to larval feeding by killing the larva, permitting normal plant development. We used reflectance spectroscopy to characterize whole-plant functional trait responses during both compatible and incompatible interactions and related these findings with morphological and gene expression observations from earlier studies. Spectral models successfully characterized wheat foliar traits, with mean goodness of fit statistics of 0.84, 0.85, 0.94, and 0.69 and percent root mean square errors of 22, 10, 6, and 20%, respectively, for nitrogen and carbon concentrations, leaf mass per area, and total phenolic content. We found that larvae capable of generating compatible interactions successfully manipulated host plant chemical and morphological composition to create a more hospitable environment. Incompatible interactions resulted in lower host plant nutritional quality, thicker leaves, and higher phenolic levels. Spectral measurements successfully characterized wheat responses to compatible and incompatible interactions, providing an excellent example of the utility of Spectral phenotyping in quantifying responses of specific plant functional traits associated with insect resistance.


Assuntos
Dípteros/patogenicidade , Triticum/parasitologia , Animais , Dípteros/genética , Dípteros/fisiologia , Resistência à Doença/genética , Resistência à Doença/fisiologia , Cadeia Alimentar , Genes de Insetos , Genes de Plantas , Genótipo , Herbivoria/fisiologia , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Tumores de Planta/parasitologia , Análise Espectral , Estresse Fisiológico , Triticum/genética , Triticum/fisiologia
18.
Sci Rep ; 9(1): 2184, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30778126

RESUMO

Cereal cyst nematode (CCN, Heterodera avenae) presents severe challenges to wheat (Triticum aestivum L.) production worldwide. An investigation of the interaction between wheat and CCN can greatly improve our understanding of how nematodes alter wheat root metabolic pathways for their development and could contribute to new control strategies against CCN. In this study, we conducted transcriptome analyses of wheat cv. Wen 19 (Wen19) by using RNA-Seq during the compatible interaction with CCN at 1, 3 and 8 days past inoculation (dpi). In total, 71,569 transcripts were identified, and 10,929 of them were examined as differentially expressed genes (DEGs) in response to CCN infection. Based on the functional annotation and orthologous findings, the protein phosphorylation, oxidation-reduction process, regulation of transcription, metabolic process, transport, and response process as well as many other pathways previously reported were enriched at the transcriptional level. Plant cell wall hydrolysis and modifying proteins, auxin biosynthesis, signalling and transporter genes were up-regulated by CCN infection to facilitate penetration, migration and syncytium establishment. Genes responding to wounding and jasmonic acid stimuli were enriched at 1 dpi. We found 16 NBS-LRR genes, 12 of which were down-regulated, indicating the repression of resistance. The expression of genes encoding antioxidant enzymes, glutathione S-transferases and UDP-glucosyltransferase was significantly up-regulated during CCN infection, indicating that they may play key roles in the compatible interaction of wheat with CCN. Taken together, the results obtained from the transcriptome analyses indicate that the genes involved in oxidation-reduction processes, induction and suppression of resistance, metabolism, transport and syncytium establishment may be involved in the compatible interaction of Wen 19 with CCN. This study provides new insights into the responses of wheat to CCN infection. These insights could facilitate the elucidation of the potential mechanisms of wheat responses to CCN.


Assuntos
Grão Comestível/genética , Grão Comestível/parasitologia , Triticum/genética , Triticum/parasitologia , Tylenchoidea/patogenicidade , Animais , Grão Comestível/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/fisiologia , Redes e Vias Metabólicas/genética , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Reguladores de Crescimento de Plantas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , RNA-Seq , Triticum/metabolismo
19.
Int J Mol Sci ; 20(2)2019 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-30669499

RESUMO

Cereal cyst nematodes (CCNs) are among the most important nematode pests that limit production of small grain cereals like wheat and barley. These nematodes alone are estimated to reduce production of crops by 10% globally. This necessitates a huge enhancement of nematode resistance in cereal crops against CCNs. Nematode resistance in wheat and barley in combination with higher grain yields has been a preferential research area for cereal nematologists. This usually involved the targeted genetic exploitations through natural means of classical selection breeding of resistant genotypes and finding quantitative trait luci (QTLs) associated with resistance genes. These improvements were based on available genetic diversity among the crop plants. Recently, genome-wide association studies have widely been exploited to associate nematode resistance or susceptibility with particular regions of the genome. Use of biotechnological tools through the application of various transgenic strategies for enhancement of nematode resistance in various crop plants including wheat and barley had also been an important area of research. These modern approaches primarily include the use of gene silencing, exploitation of nematode effector genes, proteinase inhibitors, chemodisruptive peptides and a combination of one or more of these approaches. Furthermore, the perspective genome editing technologies including CRISPR-Cas9 could also be helpful for improving CCN resistance in wheat and barley. The information provided in this review will be helpful to enhance resistance against CCNs and will attract the attention of the scientific community towards this neglected area.


Assuntos
Resistência à Doença , Hordeum/parasitologia , Interações Hospedeiro-Parasita , Nematoides , Doenças das Plantas/parasitologia , Triticum/parasitologia , Adaptação Biológica , Agricultura/economia , Animais , Edição de Genes , Inativação Gênica , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Locos de Características Quantitativas , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA